人教版小学数学教学设计案例7篇(小学数学教学设计案例7篇:激发学生学习兴趣,提升数学素养)
本文将为大家介绍7篇人教版小学数学教学设计案例。这些案例涵盖了小学各个年级的数学教学内容,旨在帮助教师们更好地设计和实施数学课堂教学。通过这些案例的学习,教师们可以了解到不同年级学生的数学学习特点和教学方法,提高自己的教学水平,为学生提供更好的数学学习体验。
人教版小学数学教学设计案例篇1
[案例描述]
平行四边形面积公式推导的教学片断:
⒈教师布置学生独立思考的内容:我们如何把平行四边形转化为已经知道面积公式的平面图形来研究它的面积公式呢?
⒉学生合作交流不到2分钟,当教师发现有一个小组的同学“过平行四边形的一个顶点作平行四边形的高,把平行四边形分割成一个直角三角形和一个直角梯形,然后再等量拼成一个长方形,所以平行四边形的面积就是底乘高”的方法后,就立即宣布合作结束。
[案例分析]
(主要从与合作学习有关的因素的角度上加以分析)
答:《新课标》明确指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动经验。案例中教师先让学生独立思考,再让学生合作交流,这样的安排是合理的、恰当的。[A2] 因为合作必须建立在学生个体需要的基础上,只有学生经过独立思考,有了交流的需要,再开展合作学习才是有价值的和有成效的。
但该教师在学生合作交流不到2分钟发现有一个小组得出计算方法时就立即宣布合作结束在时机上是不合适的,这样的做法是不得当的。[A3] 因为在合作交流的过程中,需要有充分的交流的时间和充分从事数学活动的机会,让学生在自己的小组里交流自己的看法,形成统一的意见。只有大部分的学生或普遍学生在自己的小组里交流自己的看法,形成统一的意见后才能宣布合作结束。[A4]
人教版小学数学教学设计案例篇2
[案例描述]
一年级上册P34《跳绳》(8和9的加减法)的主题图上有:1幢教学楼,教学楼边上有1面五星红旗和许多树木,操场上有8个小朋友在跳绳,问题是“说一说”。下面是教师B按教材教的教学片断:
①出示挂图。
②提问题。
师:看了这幅图,你发现了什么?
生1:我看见了房子?
师:
你真能干。
生2:我发现了红旗。
生3:我发现了树木。
生4:我发现了小朋友在跳绳。
生5:我发现了地上有小草。
……
教师不管学生如何回答,都一一加以肯定,以示教学的民主。待过了5分钟,教师急忙抛出:“谁能提出有关8的加减法?”
[案例分析](主要从问题的目的性与开放性的角度分析):
答:从问题的目的来讲,教师提出的问题缺少目的性或者说太过于开放,没有一定的指向性,教师要完成知识点的教学设计的问题,“看了这幅图你发现了什么?”这样的问题是开放了,但是在开放的基础上,没有了指向性,从而导致学生在回答问题时,都只是讲出自己看见的,但与本课的教学却是没什么关系的一些零碎信息,教师在学生表现出这一倾向时却没有及时的进行纠正,而是任其发展过了五分钟还是没讲到教师所讲的点上,这样虽说有了开放性,有了民主性,但是对本课的教学失去了可用性。
我认为教师在设计问题时,要有开放性,但也要适当的要有指向性,比如“看了这幅图你发现了什么?他们各有多少个?”,这样的提问才有目的性与开放性。[A1]
人教版小学数学教学设计案例篇3
对于教案、教学设计我们都不会有陌生感,他和我们的教学生活密不可分,我们上课前都要写教案、做教学设计,充分的、精心的教学设计是上好课的前提,而教学案例我们听得则不是很多,随着新课程改革的推进,教学案例才被越来越多的提及。这是因为人们越来越多的认识到案例对于反思教学,指导教学从而提高教师的教学水平,促进教师的专业成长的作用。下面我将从以下几个方面和大家一齐说说有关案例的知识。
首先我们来看什么是案例,也就是案例的概念。
一、案例的概念
案例是指发生在课堂教学过程中的一个典型的事例,一般比较具有代表性或有重大好处,它比较详细的记叙了一个教学片断或是整堂课的具体的教学情节,向人们带给教学的过程,引发大家的思索,然后探讨产生的原因和影响,并作必须的分析和反思,从中体现先进的理论和思想。
比如:“尊重学生的数学现实”——《分数乘整数》这个案例记录的就是《分数乘整数》这节课中的一个片断,首先作者说明了这个案例产生的背景:即在给同轨教学班中的一个班上这节课时,教师按照通常的做法,先复习了乘法的好处,然后引入分数乘整数的好处,透过几个相同的分数相加引入分数乘整数的计算。教师步步铺垫,学生学起来能够说没什么困难,但课堂上却气氛沉闷,课下教师问原因,学生们说:“老师,我们早就会了,听着觉得没什么意思”所以作者在给另一个班上课时作了调整,于是就有了下面这个案例。
介绍完背景后,作者把教学片断以访谈录的形式记录了下来,这是我们大家熟悉的实录的形式,师如何说的,学生如何回答的,甚至某处学生的表情与动作都记录上了,片断后面是反思,反思中作者分析了改善后的设计成功的原因:一是尊重学生的数学现实,二是实现数学学习的个性化,反思中作者抓住了这个教学片断的特点,分析得很透彻。(老师们能够细致的读一读这个案例,它是很有代表性的教学片断的案例,来自小学教学设计理科版),我们再看“发展语言不是语文课的专责”——《1——5的认识》案例,这是一节课的案例,是对整堂课的教学情节进行了记录,同样,在后面是反思,它以评析的形式,分析了这节课的突出特点:在数学课中,同样应注意发展学生的语言。
刚才,我们明确了案例的概念,接下来我们把案例与教案、教学设计、教学实录作一下比较:
二、案例与教案、教学设计的区别:
教案和教学设计是根据必须的教育思想、教学方法,在课前设想的教学思路。案例则是对已经进行完的教学过程的反映,一个写在教之前,一个写在教之后,一个是预期,一个实现是的过程和结果。
那么同是写在教之后,案例与教学实录又有哪些区别呢?
1、案例要有对本教学问题的反思,对好的教学行为,教学效果,要进行分析,分析它体现了哪些先进的教育教学思想,对存在问题的教学行为要分析出症结所在,对教学有指导作用。
2、同样对教学情境进行描述,实录是有问必录,案例是有选取的记录。
接下来,我们一齐来看一看,写教学案例应注意些什么:
三、案例的撰写要求
在形式上案例通常分为以下几大块:
一背景、二教学经过、三分析。当然,这不是固定的模式。
l、背景介绍,即案例发生的原因或条件,如《分数除以整数》这个案例,作者这样介绍它的背景:开学初上了一节公开课,资料是浙江省编的义务教育教材第十一册“分数除以整数”一课,在《数学新课程标准》的指引下对新知识的引入和巩固的设计觉得比较有新意,此刻就几个教学片断评析如下。
2、教学经过,即教学片断、或整个教学过程的访谈录。记录的教学经过,不是有闻必录,而是有选取的录关键性的教学情节要记录详细、清楚、具体,什么是关键性的教学细节,怎样写具体、写清楚,大家能够看《人民教育》、《小学教学设计》等刊物中刊载的教学案例,仔细读一读,读后感悟会有更深切的感悟。
3、分析,即反思或评析。揭示案例所反映的教学问题、所体现的教学思想,或存在的不足。也就是这个案例教学效果好好在哪里,不足,问题出在哪里?在前面实践的基础上,作分析,为实践寻找理论的依据。我们从刊载的案例中也能看出他们的案例都包内含一个或几个教学难题、热点问题或新课题,同时包内含解决这些问题的方法和反思。也就是分析案例所体现的理念。
在撰写时要注意:
1、要有一个主题:撰写时首先要思考这个案例索要反映的问题,这个案例无论记录的是成功的教学过程还是失败的教学片断,都要从最有收获、最具代表性、启发性的角度切入,来确定主题。我们看很多的案例都有一个主标题,下面还有一个副标题,副标题是指出这是哪节课的案例,而主标题多数是指出这个案例所要反映的主题,或是这个案例主题的一个方面。
2、注意案例要有真实性和典型性。
3、在撰写案例分析时,要对案例所反映的主题和资料,包括教育教学的指导思想、过程、结果,以及利弊得失有必须的看法和分析。是在记叙基础上的议论,要进一步揭示事件的好处和价值,能够从教育学、心理学、教学法等不同的理论角度入手,揭示成功的原因和科学的规律。
从以上的解释中我们也能看出,做教学案例的价值。
四、撰写教学案例的目的
1、对教学实践的反思,把理论学习与教学实践紧密的结合起来,用以改善和指导今后的教学实践。
2、梳理、记录分析自己的教学,提高教育教学潜力和水平。案例不仅仅记叙了教学行为,也记录了伴随行为而产生的思想、情感及灵感。他是个人的教学档案或教育教学史,有其独特的保存和研究价值。
人教版小学数学教学设计案例篇4
[案例描述]
北师大版三年级上册《需要多少钱》(两位数乘一位数的口算)的教学片断:
①出示买卖的情境图(图标有泳圈的单价12元,篮球的单价15元)。
②引导学生提出数学问题。
③探索算法多样化。
师:买3个球需要多少钱?算式怎样列?
生:15×3=
师:应该怎样算呢?
生1:我用加法15+15+15=30+15=45(元)
生2:我用乘法10×3=30
5×3=15
30+15=45(元)
生3:把15看成3个5,共有9个5,得45(元)
师:你喜欢用什么方法?
生1:用加法。
师:用加法也可以。
生2:用乘法。
师:好的。
④练习13×3
70×5
24×2
13×5
31×3
34×2
24×4
师:你喜欢用什么方法就用什么方法。
学生练习时笔者观察了7位小朋友所用的方法,其中有4位是采用加法的……
[案例分析]
(主要从算法多样化与优化的层面上加以分析):
答:《数学课程标准》指出:能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。算法多样化就是鼓励学生独立思考,鼓励学生尝试用自己的方法来计算。由于学生不同的的生活经历和知识能力水平,同一道题目不同的学生常常找到不同的解题策略。在教学中,由于每个学生都有自己的计算方法,学生不再是一个依赖教师的模仿者,而是独立探索的求知者。同时算法多样化与算法优化是不矛盾的。两者可以而且应该统一于学生探究学习的过程中。应把优化的过程作为一个学生主动寻找更好的方法的过程来展开,不要追求全班算法的高度统一,应当充分尊重学生自己的选择,只要学生认为合适,自己喜欢,教师应当加以肯定与鼓励。
案例中教师鼓励学生尝试用自己的方法来计算,用不同的解题策略解决同一道题目,体现了算法多样化,为学生之间和师生之间的交流提供了很好的条件,有利于激发学生的创新意识,逐步形成创新的习惯,使得每个学生都能着手解决问题,品尝成功的喜悦。接着鼓励学生用自己喜欢的方法计算。这样的处理是恰当的。应该提倡学生用自己擅长的方法算,这样才能呵护学生的主体意识,实现不同的人在数学上得到不同的发展。[A5]
但是教师应致力于让学生用自己喜欢的方法在计算的过程中发现差距,从而选择最恰当的方法来解题,达到算法最优化。[A6]
因此,本案例中,教师还应该引导学生发现解题规律,屏弃学生自己低水平的解题策略,让学生自己来选择最恰当的方法来解题,实现算法优化,从而为以后的学习奠定基础。[A7]
人教版小学数学教学设计案例篇5
小学数学教学设计案例分析篇4
[案例描述]
《带分数乘法》教学片断:
⒈学生根据应用题“草坪长5米,宽2米,求草坪的面积。”列出算式:5×2
⒉算式一出现,教师就立即组织四人小组交流算法。
其中一个组,在小组交流时,由于三位同学还没有想出方法,整个合作过程只好由一位同学讲了三种方法:
①(5+)×(2+)
②5.8×2.5
③×
其他同学拍手叫好而告终。
请你根据上述教学片断进行反思
[案例分析](主要从合作交流与独立思考的层面分析)。
答:以上现象是教师在使用小组合作时经常出现的一种问题。就是没有处理好小组合作和独立思考的关系。
教师要处理好合作学习与独立思考的关系:
强调合作学习不是不要独立思考。独立思考应是合作学习的前提基础,合作学习应是独立思考的补充和发挥。多数学习能通过独立思考解决的问题,就没必要组织合作学习。而合作学习的深度和广度应远远超过独立学习的结果。当然,宜独宜合,应和教学情景、学生实际结合,择善而用,才能日臻完美。
我们在设计学生合作学习时,能否认真的思考以下三个问题:学生在合作交流前,你让学生经历过独立思考吗?学生在合作交流时,他们有充分的时空吗?学生在合作交流时,有否进行明确的角色分工呢?
看过“ 小学数学教学设计案例分析 ”的还看了:
人教版小学数学教学设计案例篇6
小学数学课堂教学案例分析:《三角形的面积》
【案例背景】前几天上了一节“三角形的面积”感触颇深。“三角形的面积”是小学五年级数学教材上学期第五单元“多边形的面积”的资料,这部分教材是在学生初步认识了长方形、正方形及平行四边形的面积的基础上,尤其是平行四边形面积公式的推导基础上开展的教学活动。结合本班学生的实际和学生已有知识设计教学活动,使他们有更多的操作机会,从猜想、操作、验证到得出结论,再到运用所学知识解决生活中的实际问题,感受数学与现实生活的密切联系,提高学生运用数学知识解决实际问题的潜力,从而提高学生的综合素质。
【案例描述】
1、假设猜想:展示长方形、正方形、平行四边形、三角形的图片。说出前三种图形的面积的求法,观察猜测三角形的面积会怎样求。该怎样转化推导。
2、操作验证:根据你的猜想,动手操作验证一下吧,教师巡视指导。
反馈:谁愿意说一说,你是怎样操作的,得到什么样的结论。
根据学生描述得出结论:把一张三角形纸片的三个角向内对折,变成一个小长方形,得到长方形的长是原先三角形底的一半,宽就是三角形的高的一半,为此,三角形的面积等于小长方形面积的2倍。2倍与其中的一个“一半”抵消,还剩一个“一半”为此,三角形的面积等于底乘高除以2
3、继续引导:这个办法怎样样谁还有不同想法,做法
生:将三角形的顶角向底边平行对折,再沿折痕剪开,把得到的小三角形沿中间对折再剪开,分别补在剩下图形的两侧,变成一个长方形。三角形的底没变,高缩小了一半,为此,三角形的面积等于底乘高除以2
师:这个办法怎样样
生:也很合理。(表扬,祝贺)
师:你还有其他做法吗
生:选两个同样的三角形,将两个三角形颠倒相拼,拼出一个平行四边形,拼得的平行四边形的底是原先三角形底的2倍,高不变,所以,三角形的面积等
于底乘高除以2。
师:这个办法怎样样看来同学们在探究三角形面积的推导想出的办法还真不少,那么,你感觉哪种办法最好最有创意
师:无论哪一种,我们都得出了同样的结论,就是。。
生:三角形的面积等于底乘高除以2。
4、共同把这个结论用公式的形式表示出来。
师:谁愿意到黑板面前写一下
生:书写。群众订正。
如果用S表示三角形的面积,用a表示三角形的底,用h表示三角形的高,那么,你会用字母表示三角形的面积公式吗
生:在练习本上书写,师巡视指导反馈,自由到板前书写。群众订正。
5、公式的运用:要想计算一个三角形的面积,需要明白哪些条件
生:三角形的底和高。
师:那么,我们应用三角形的面积公式计算一些题好吗
生:独立完成课本中试一试题目
6、小结:其实,生活中,有很多问题能够运用三角形的面积公式来求出,让我们共同走进生活解决一些生活中的问题。
师:(课件展示题目)
生:独立或与同伴合作研究完成。
总结:透过这节课的学习,你有什么收获
【评析】
“三角形的面积”是一节常规性的课,关于这节课的教案不少,课我也听了不少,如何体现“观念更新,基础要实,思维要活”,我觉得以往老师们对教材的把握与处理,对课堂的设计以及处理都很不错,而这节课让我感触很深:
1、突破传统教学模式,思路独特新颖。
传统教学的种种封闭压抑了学生个性的发展,学生迫切需要一种展现自我,发展个性的体验式学习。以前的教学改革,大多停留在数学学科层面上,往往比较注重将教科书上的知识教给学生。在教学中。往往是教师清楚要教什么,为什么这样教和怎样教,学生却不明白自己要学什么、为什么学和怎样学。学生的学习缺少方向,缺少动力,缺少方法,他们学习的主动性、创造性很难得到发挥。因此,当前教育改革的重点应是以教师教学方式的转变来促进学生学习方式的转变,从而更好地促进学生的主体性发展。教师把整个学习过程放给学生,让学生小组合作,全员参与,共同探究,由感性认识上升到理性认识,让学生参与知识获得的全过程。
2、让探究式学习具有必须的开放度。
探究式学习要不受任何人的约束,要有必须的开放度。在上面这一环节中,教师注重教材的开放性和思考性,让学生有自主选取的权利和广阔的思维空间,如教师带给一些具有代表性的材料,让学生透过猜想、操作、验证等一系列的活动,在相互交流的过程中,理解三角形的面积公式,学生在操作活动中展现了自我,方法多样且独特,是以往教学所没有的,实在是妙不可言。既渗透了集合的思想,有助于学生空间观念的建立,也让学生看到了数学知识与生活的联系,感悟了生活中的数学。也为计算组合图形的面积奠定基础,同时也培养学生的实践潜力和合作精神。
3.建立新型民主的师生关系。
教师遵循儿童学习规律的同时,创造性的处理教材。在这个教学过程中教师找准学生的认知的起点,以几个图形图片为切入口,让学生观察、猜想。动手操作,折一折,剪一剪,分一分,补一补等,在这些过程中,教师以学生为主体,让学生自主探索,教师尊重学生,发扬教学民主,学生在小组合作时用心主动地参与和探讨、质疑、创造,并逐步的完成对知识的理解和深化,充分发挥学生的主体作用,较好的体现了教师是学习的组织者,引导者,合作者和共同的研究者。使学生到达对知识的深层理解,还培养了他们敢于探索、勇于创新的精神。亲历探究发现的过程,已不是一种获取知识的手段,其本身就是教学的重要目的。教师只有创造性地教,学生才能创造性地学。
从上述案例中,我们不难发现,学生学习方式的转变关键在于教师。教师要不断更新教学观念,真正树立以学生为主体的教学理念,相信学生,给学生充分的探究思维的空间,以发挥学生学习的自主性、创造性。
人教版小学数学教学设计案例篇7
一例一议“精细化教学”
科学探究,是当今课堂教学改革领域中打造高效课堂的有效举措,教师要多为学生创造探究学习的机会,尤其要抓住每一个细节,把握每一次机遇,让学生不失时机地在探究中学习,在探究中收获,在探究中提高。实践证明,课堂上科学、有效的探究,是构建高效课堂、实现精细化教学的必由之路。
【教学案例】
人教版小学数学五年级下册练习六中有这么一道题:
(见题图)这个颁奖台是由3个长方体合并而成的。它的前后两面涂上黄色油漆,其他露出来的面涂红色油漆。涂黄色油漆和红色油漆的面积各是多少(题图说明:这三个长方体颁奖台紧靠着,且中间的1号颁奖台最高,左边的2号颁奖台次之,右边的3号颁奖台最低。在1号颁奖台的正面靠近这个长方形面的左边竖直边线的右侧中下方标注“65cm”字样,同时在这条边线上面一小部分的左侧标注“10cm”字样,而在图中还有五处标注“40cm”字样,证明这三个长方体的下底面都是边长为40cm的正方形,以及3号颁奖台的右面也是一个边长为40cm的正方形。)?
学生自主解答后,我发现大体有两种不同的答案,其一是这样的——
涂黄色油漆的面积:
[v65-10w×40+65×40+40×40]×2
其计算结果为12800平方厘米;
涂红色油漆的面积:
65×40×2+40×3×40
其计算结果为10000平方厘米。
而另一种状况则是——
涂黄色油漆的面积:
[65×40+v65+10w×40+40×40]×2
其计算结果为14400平方厘米;
涂红色油漆的面积:
v65+10w×40×2+40×3×40
其计算结果为10800平方厘米。
学生的解题思路大致相同,而为什么会出现这样两种不同的结果呢?对此,我组织、指导学生进行了探究。在探究学习过程中,大家发现了两种解法的差别在于1号颁奖台的高的取值不同,即一种解法的取值为65厘米,另一种解法的取值为75厘米。由于题图中明确标注了40厘米、65厘米及10厘米等数值,则能够从中对三个长方体的长、宽、高分别取值,而正常状况下这几个量(已知条件)的取值在图中能够很容易得出来,为什么会有学生产生误解呢?到底哪种取值是正确的?透过讨论、探究,最后大家一致认为1号颁奖台的高为65厘米。
(下面是师生探究活动记实)
学生甲:如果2号颁奖台的高是65厘米,那么原题的图中就就应把“65厘米”字样标在2号颁奖台的左边,所以根据“65cm”字样标注在1号颁奖台的正面上,我认为65厘米是给出的1号颁奖台的高。
学生乙:我观察到1号颁奖台正面左边的这条棱被分成两条线段,上面较小的部分是10厘米,而从图中能够明显地看出下面较大的部分则为65厘米长,而这两个数字都是标注在这两条线段附近的,所以1号颁奖台的高就是10厘米与65厘米之和,即75厘米。
师:既然同学们对题图中已知数值的读取存在分歧,此刻我就给大家一个科学的解释——我们能够把题图理解成是由实际的颁奖台按必须的比例缩小而构成的,这就要有一个缩小的“尺子”,我们把它称之为“比例尺”,而在同一个图中,图上距离与实际距离的比是必须的,那么同学们就来求一下图中有关线段在不同取值状况下的这个“比”如何?
听了我的说法,同学们跃跃欲试,纷纷行动起来。
经过同学们的测量、计算、比较,最后证实了1号颁奖台的高为65厘米。
【课后反思】
对于一道数学题的解答,似乎大可不必如此“兴师动众”,而课后想起来,我的这种做法并非“小题大做”,而却是“大有益处”的。
1、大大地激发了学生的探究兴趣。
2、培养了学生严谨的学习态度。
3、透过“借题发挥”而把知识向未知领域延伸,不但实现了“比例尺”这项知识的渗透,而且还使学生懂得了“学无止境”的道理。
4、达成了培养学生构成细致而有序的审题习惯这一教学设想。
回顾此例的教学,我认为教师在教学中不能盲目地、简单地教给学生问题的答案,正如上面的这个问题,如果我只是告诉学生1号颁奖台的高为65厘米,认识不清的学生只要照做就能够了,那么仍会有学生感到不解,甚至还可能依然坚持自己的看法而一头雾水。
因而,为实现精细化教学,构建高效课堂,我们要明确:
教会学生一个问题并不是教育的目的,教育的真正目的在于抓住教育契机,教给学生科学的、适用的、有效的学习方法,引发学生参与探究,以切实实施精细化教学,从而培养学生的潜力,培养创新精神与数学素养。